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The steady axially symmetric incompressible flow past a sphere is investigated 
for Reynolds numbers, based on the sphere diameter, in the range 0.1 to 40. The 
formulation is a semi-analytical one whereby the flow variables are expanded as 
series of Legendre functions, hence reducing the equations of motion to ordinary 
differential equations. The ordinary differential equations are solved by numerical 
methods. Only a finite number of these equations can be solved, corresponding to 
an approximation obtained by truncating the Legendre series at some stage. 
More terms of the series are required as R increases and the present calculations 
were terminated at R = 40. The calculated drag coefficient is compared with the 
results of previous investigations and with experimental data. The Reynolds 
number at which separation first occurs is estimated as 20.5. 

1. Introduction 
The problem investigated is that of steady incompressible axially symmetric 

viscous flow past a sphere in a uniform stream. Previous numerical solutions of 
this problem have been given by Kawaguti (1950) a t  R = 20, Lister (1953) at 
R = 0,1,10,20 and by Jenson (1959) at R = 5,10,20,40. Here, R is the Reynolds 
number based on the sphere diameter. These solutions were carried out by 
applying relaxation methods directly to  the governing equations for the vorticity 
and axially symmetric stream function. A Fourier expansion for the flow variables 
was used to solve the problem for a wide range of Reynolds numbers by Dennis 
& Walker (1964). Numerical solutions were given by Hamielec, Hoffman & Ross 
(1967), Le Clair, Hamielec & Pruppacher (1970) and Pruppacher, Le Clair & 
Hamielec (1970) using methods similar to those of Jenson, but with finer grid 
sizes. Finally, Rimon & Cheng (1969) obtained steady solutions by impulsively 
starting a sphere from rest with uniform velocity and using a time-dependent 
integration to carry the solution to steady state, 

There are also a number of experimental and analytical treatments of this 
problem. The earlier experimental measurements of the drag on a sphere have 
been described by Castleman (1926), Goldstein (1938, p. 16), Perry (1950, p. 1018) 
and Schlichting (1960, p. 16). The recent experimental work of Maxworthy (1965), 
Pruppacher & Steinberger (1968), Beard & Pruppacher (1969) and Le Clair, 
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Hamielec & Pruppacher (1970) has suggested that the earlier results are inaccu- 
rate. One of the objects of these recent experimental investigations was to check 
the range of usefulness of expressions for the drag obtained from theoretical 
treatments of the problem at low Reynolds numbers. Van Dyke (1964b, pp. 
149-165) has described the theories at low Reynolds numbers for both a circular 
cylinder and a sphere. A more recent contribution for a sphere, in which the work 
of Proudman & Pearson (1957) based on matched asymptotic expansions has 
been furtjher extended, is given by Chester & Breach (1969). Experimental and 
theoretical investigations of the length of the separated wake region behind the 
sphere also exist. The dependence of this quantity on Reynolds number has been 
measured experimentally by Taneda (1956), and a theoretical estimate based on 
low Reynolds number theory has been illustrated by Van Dyke (1964b, p. 159). 

One of the objects of obtaining numerical solutions is that some check may be 
obtained on the experimental and theoretical results. In  the previous numerical 
work there is little detail for very small values of R and discrepancies exist 
between a number of the results given. In  the present paper an attempt to obtain 
accurate solutions over the range R = 0.1 to 40 is made using an application of 
the method of series truncation. A recent paper by Underwood (1969) has applied 
the series truncation method proposed by Van Dyke (1964a, 1965) to calculate 
the steady flow past a circular cylinder for Reynolds numbers up to 10. The main 
method used by Underwood (1969) is to expand the stream function as a Fourier 
series in the polar angle 8, with functional coefficients in the radial variable. The 
series is substituted in the Navier-Stokes equations and truncated by putting all 
functional coefficients after a certain stage in the series equal to zero. This gives 
a finite set of ordinary differential equations to be solved for the functional 
coefficients. These are solved numerically and the number of equations to be 
solved depends upon the number of terms retained in the truncated series. A 
similar method can be used to solve the sphere problem, by employing series of 
Legendre functions in place of Fourier series. 

The problem is expressed in terms of the usual pair of simultaneous equations 
for the stream funotion and vorticity written in terms of the co-ordinates (5, 8), 
where 6 = log (ria), a is the radius of the sphere centred at  the origin, and (r ,  19) are 
polar co-ordinates in a plane through the axis of the sphere. The uniform stream 
is in the direotion 8 = 0. The stream function and vorticity are expanded in series 
of Legendre functions of argument z = cos I9 with functional coefficients in the 
variable 6. When these series are substituted in the governing equations, two 
sets of second-order ordinary differential equations result. These are truncated 
and solved numerically. The approach is different in some respects from the 
treatment of the circular cylinder given by Underwood (1 969) who solved a single 
set of fourth-order differential equations. The method of utilizing the boundary 
conditions is also different. Calculations have been carried out for 

R = 0.1 (0.1) 1 , 5 , 1 0 , 2 0  and 40. 

The results up to R = 1 are compared with the theories at  low Reynolds numbers 
and the whole range of results is compared with experimental observations and 
with other numerical calculations. 
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2. Analysis 

stream function $(t, 0) defined by the equations 
The equation of continuity is satisfied by introducing the dimensionless 

(1) 
e+ a$ 
sin0 a< ’ v=--- e-Y a$ 

sin 0 80 ’ 
= __- 

where (u, v) are the dimensionless radial and transverse components of velocity 
obtained by dividing the corresponding dimensional components by the stream 
velocity U , .  The other dependent variable to be used is the dimensionless vorticity 
{(t, 8) defined by the equation 

The equations satisfied by $ and 5 are then 

(3)  

where R = 2aUJv is the Reynolds number, v being the coefficient of kinematical 
viscosity. The boundary conditions to be satisfied are 

$ = a$/at  = 0, when t = 0, ( 5 )  

$ -  +eYsin28 as [+-a. (6) 

Expansions for $ and 6 are now assumed in the respective forms 

W 

6 = Z gn(6) PP’(z), (8) 
n = l  

where Pn(z) and PE)(z) are, respectively, the Legendre and first associated 
Legendre polynomials of order n. Substitution of (7) and (8) in (3) gives 

.fi - (n + B)2jn = n(n + 1) eicg,, (9) 

fn(0) = f A ( O )  = 07 (10) 

f n  N e%Sn, as 6 ~ 0 0 ,  (11) 

where primes denote differentiation with respect to $. The boundary oonditions 
become 

where 8, = 1 and 8, = 0 if n + 1. It may be noted that, by integration of (9), 

where the constant of integration has been adjusted to satisfy the conditions 
(10). The condition (1 1) then implies that 
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This condition is used in the numerical procedure in a manner to be described. 
Effectively it replaces the condition (ll), which is not required further. 

The velocity components (u, w) can be obtained in the form of series by sub- 
stituting the series (7) into (1). If the resulting expressions are substituted into 
(4) along with (S), it is found by standard methods of orthogonal functions that 
(4) can be expressed as the set of ordinary differential equations 

(14) g:+ (1 -A,)gA-{n(n + 1) +Bn)gn = 8%. 

The quantities A n @ ,  B,(c) and X,(g) can all be evaluated by manipulation of 
Legendre functions and only the final results will be given. It is found that 

The constants ati and pti are derived from the integrals of three associated 
Legendre functions and may be shown to be given by 

where 

are the 3-j symbols. A table of the quantities defined by (1 8) and ( 19) and the 
algorithm to compute them numerically is given by Rotenberg, Bivins, Metro- 
polis & Wooten (1959). Talman (1968) has given a detailed account of the theory 
underlying their use with Legendre functions. 

It is seen that the equations (14) are a set of simultaneous equations which are 
homogeneous in the functions g,(<) with coefficients which can be calculated 
numerically from the functions f,([). The theoretical problem is to solve these 
equations simultaneously with the set of equations (9). The solutions must 
satisfy the conditions (10) and (13). Also it may be shown either from Oseen's 
(1910) approximate solution, which is quoted by Batchelor (1967, p. 241) or from 
the asymptotic solutions of Walker (1968) that 

Yn(6) N Dne-3fj as $+a, (20) 

where D, is a constant. A truncation of order no is defined by solving the 2n0 
second-order differential equations obtained by putting all functions with 
subscripts greater than no equal to zero in (9) and (14). Numerical solutions are 
obtained by an iterative procedure and it remains only to describe brief details 
of the numerical methods which have been used. The set of equations (14) may 
be termed the vorticity equations. A given solution gn(c)  is termed the nth mode. 
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3. Numerical methods 
Each vorticity equation is solved as a boundary-value problem. In accordance 

with (20)  it is assumed that 

g,(Z) = e-”g,(l- h) (n = 1 ,  2,  ..., no), (21)  

where 1 is some sufficiently large value of f l  and h is the step size. The other 
condition to be satisfied by gn([)  is (13) ,  and this is utilized as follows. Let Gn(fl) be 
a solution of (14)  which satisfies G,(Z) = e-3hG,(l-h) and also some arbitrarily 
imposed value at f l  = 0, say G,( 0 )  = 1. Also let H,(f)  be a solution of the equation 
obtained by putting S,(f) = 0 in (14) which satisfies the condition H,(Z) = e-3h 
H,(l- h) together with an arbitrarily imposed condition, say H,(O) = 1,  at [ = 0. 

satisfies both (14)  and (21 ) .  Equation (22)  is now multiplied by e-(n-z)E and 
integrated from [ = 0 to fT = 00, assuming that G, and H, behave in the same way 
as gn in equation (20) from 6 = Z to f = a. Since g n ( f )  must satisfy (13) ,  the 
constant C and hence the required g , ( [ )  is determined. 

Central differences are used to approximate the derivatives in (14)  in obtaining 
the numerical solutions. We use the Southwell notation for grid points, in which 
the subscripts 3 , 0 , 1  denote function values at  the points f = flo - h, fl  = Eo and 
6 = flo + h, where f ,  is a typical point and h is the grid size. For convenience, the 
subscript n in (14)  is suppressed and the finite-difference approximation at the 
point f = Eo can be written 

g 1 - 2 g o + g , + ~ h ( l - A o )  (gl-g,)-h2(n(n+ 1)+Bo)go-h2So = 0.  (23)  

This defines a tridiagonal matrix problem of the form 

where 

Approximations to a, b, c and d are known at every grid point during the course of 
a general iterative method of solution, and the matrix problem defined by (24)  
is solved using the direot method described by Rosser (1967). 

The equations ( 9 )  are of the general form 

f ” - k z f =  P([) (25 )  

and each has an associated pair of initial conditionsf(0) = f ’ (0)  = 0 in accordance 
with (10). A numerical method of solving (25)  which is both stable and accurate 
has been developed by Dennis & Chang (1969) for the case when k is an integer. 
Since the method is equally applicable when k is any constant, it  is used in the 
present case. Briefly, the technique is to introduce functions 

r = f ’ - k f ,  s =y+kf, 
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r ’+kr  = F, d - k s  = P (26) 

with r(0)  = s(0) = 0. The first of equations (26) is integrated by a stable step-by- 
step method in the direction of increasing 6. The same stable method may be 
applied to integrate the second of (26) backward from E = 1 to [ = 0. It may be 
shown by relatively minor modifications of the work of Dennis & Chang (1969) 
that as long as the condition (13) has been satisfied it is possible to calculate a 
value for s(Z) to initiate the backward integration, and a check on the calcula- 
tion is provided by the fact that s(0) must come out to be approximately zero. 
Formulae of integration which lead to very accurate numerical solutions have 
been given by Dennis & Chang (1969). 

For a truncation of given order, the truncated sets of equations (9) and (14) 
are solved by means of an iterative procedure. A set of iterated solutions 

{gf’(tJ (n = 1 , 2 ,  ..., no)} (j = 1 , 2 , 3 ,  ...), 

is obtained from equation (14), together with a oorresponding set of solutions of 
(9), by the following process. Suppose that the iterate with superscriptj has been 
completed. The equations (14) are now solved sequentially from n = 1 to no. 
Before each equation is solved, the data for the grid values of a, b,  c and d which 
is required in (24) is calculated from the most recently available information. 
As each new mode is determined it gives a solution which we may denote by 
gg+i)(lJ. The components of the iterate with superscriptj+ 1 are then defined by 
taking the weighted average 

where 0 < K < 1. Before proceeding to  the next value of n, the new mode calcu- 
lated from (27) is used to obtain a corresponding function ff+l)([) from (9). 
Finally, when n = no the (j+ 1)th iterate is complete and the procedure is 
repeated until, ultimately, convergence is reached. This is decided by the test 

l g ~ + l ) ( ~ ) - g ~ ) ( 0 ) ]  < 8, for all n 6 no, (28) 

where 8 is some pre-assigned tolerance. This condition is quite adequate, since it 
has been verified that convergence on the boundary of the sphere only occurs 
when convergence throughout the whole field has taken place. 

R h 1 r ,  la K € 720 

R < 1 0.0245 4.9 134.2 0.05 10-5 6 
5 0.0246 4.9 134-2 0.05 10-5 14 

10 0.0245 4.9 134.2 0.025 10-4 16 
20 0.025 5.0 148.4 0.01 10-4 16 
40 0.025 5.0 148.4 0.0075 10-4 20 

TABLE 1. Parameters of calculations 

The averaging process described by (27) has been found to be necessary to 
achieve convergence of the iterative procedure. The constant K is a parameter of 
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the solution. If the iterations are found to be divergent, the parameter Ir' may be 
reduced until convergence results. The other main parameters are the grid size h, 
the quantity 1 defining the maximum value off; to which the numerical solutions 
extend, and the maximum number of modes no used in a given truncation. The 
effect on the computed solutions of varying all these parameters was considered. 
As a result of the experience obtained by varying the parameters, the final results 
presented in the next section are based on the parameters shown in table 1.  The 
quantity r,/a is the dimensionless polar distance corresponding to 5 = 1. The 
maximum number of modes used was based on a balance between the considera- 
tions of obtaining physical properties of reasonable accuracy without an un- 
reasonable amount of computation. Some evidence on the effect of truncating the 
series is given in the final section. 

4. Calculated results 
The drag on the sphere and the surface pressure distribution can be calculated 

from a knowledge of g,(O) and gh(0). These coefficients are given for the first eight 
modes in tables 2 and 3, respectively. The results are based on solutions obtained 
using the number of modes given in table 1. Values of g,( 0) for higher modes are 
less than The drag coefficient CD is defined by the equation 

CD = D/(rpU2,a2), 

R 

0.1 
0.2 
0.5 
0.8 
1 
5 

10 
20 
40 

gd0) 
1-5263 
1.5504 
1.6149 
1.6749 
1-7126 
2.2205 
2.6764 
3.2008 
4.0224 

92(0) 
- 0'0123 
- 0.0241 
- 0.0573 
- 0.0885 
- 0.1082 
-0.4116 
- 0.7075 
- 1.1185 
- 1'7863 

TABLE 2. 

- 0.0002 
- 0.0004 
- 0.0005 
- 0.001 1 

0.0053 
0.0229 
0-0609 

- 
- 

0.00003 
0.0014 
0.0072 
0.0304 

- 
- 

- 0~0001 
- 0.0004 
- 0~0009 
- 0.0035 

- 

- 0.0002 
- 0*0009 
- 0.0038 

- 
- 0*0002 
-0.0012 

Vorticity modes on the surface of the sphere 

R 
0.1 
0.2 
0.5 
0.8 
1 
5 

10 
20 
40 

d ( 0 )  
- 3.0526 
- 3.1010 
- 3.2317 
- 3.3544 
- 3.4321 
- 4,5380 
- 5.6202 

- 9.5352 
- 7.0378 

s m  
0.0402 
0.0789 
0.1898 
0.2961 
0-3646 
1.5237 
2.8459 
5.0255 
9.3083 

- 0~0001 
- 0.0006 
- 0.0012 
- 0.0585 
- 0'2313 
- 0.6890 
- 1.9251 

- 
0~0001 
0~0001 
0.001 9 
0.0017 

- 0.0112 
- 0.0905 

- 
- 

0.001 1 
0.0055 
0.0214 
0.1038 

- 

- 
0.0002 
0.0013 
0.0076 
0.0353 

- 
0.0002 
0.0014 
0.0083 

TABLE 3. Vorticity mode derivatives on the surface of the sphere 



778 8. C .  R.  Dennis and J .  D. A .  Walker 

where D is the total drag on the sphere and p is the density of the fluid. The oo- 
eacient is composed of two parts due to the friction and pressure drag, respec- 
tively. The friction drag coefficient is given by 

and if the series (8) is substituted this gives 

The pressure drag coefficient is 

Q =--- I l7lp(0, 0 )  sin 28d8, 
Pug 0 

wherep(C, 8) is the pressure in the fluid. From the equations of motion it may be 
shown that 

and ifwe integrate with respect to 8 and then substitute in the preceding integral, 

The surface pressure is expressed in terms of a dimensionless pressure coeffi- 
cient. First, by integrating the appropriate equation of motion along the axis 
0 = n from c = 0 to f l  =GO, the pressure coefficient 

is obtained. Here, p n  is the pressure at 8 = 71 on the equator of the sphere andp, 
is the uniform pressure at infinite distance from the sphere. Finally, on integra- 
tion of the result (30) around the equator of the sphere, the pressure coefficient 
at angular co-ordinate 8 is obtained in the form 

R 

0.1 
0.2 
0.5 
0.8 
1 
5 

10 
20 
40 

Cf 
8 1-40 
41.34 
17-23 
11-17 

9.134 
2-369 
1.427 
0.854 
0.536 

ClJ 
40.70 
20.67 

8.622 
5.598 
4.585 
1.236 
0.785 
0.512 
0.368 

C D  
122.10 

62.02 
25.85 
16.76 
13.72 
3.605 
2.212 
1.365 
0.904 

k(0) 
- 60-07 
- 30.05 
- 12-02 
- 7.516 
- 6.017 
- 1.203 
- 0.654 
- 0.322 
- 0.192 

TABLE 4. Physical properties of the solutions 

k ( a )  
62-03 
31.97 
13.86 

9.289 
7.753 
2.599 
1.878 
1.471 
1.261 
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Calculated drag coeacients are given in table 4 together with values of k(0) 
and k(n). These agree well with the calculated results of Le Clair et al. (1970). The 
coefficient C, is compared with the results of other numerical investigations in 
table 5 and the quantity (DID,) - 1, where D is the drag and D, is the Stokes drag, 
is compared with theory and experimental results in figure 1. Two sources of 
experimental measurements have been used in figure 1. The first are the results 
of Maxworthy (1965) and the second are several sets of measurements recently 
correlated by Pruppacher et al. (1970). These latter measurements have been 
placed on a curve by these authors and are presented here in this manner. The 
present results appear to agree very well with experiment. 

Jenson 
R (1959) 

0- 1 
1 
5 3.98 

10 2.42 
20 1.473 
40 0-930 

- 
- 

LeClair, 
Dennis & Hamielec & 
Walker Pruppacher 

- 122.04 
13.5 13.66 

(1964) (1970)t 

- 3.515 
2.06 2.144 
1-32 1.356 
- 0.930 

Rimon & 
Cheng (1969) Present results 

- 122.10 
- 13.72 
- 3.605 

2.205 2.212 
- 1-365 

0.930 0.904 

(t These values are half the values quoted by Le Clair et al. (1970) who define 

C, = D/(&rpa2U%) 

TABLE 5. Comparison of C, 

Comparison of the present results for CD in the range R = 0.1 to 1 may also be 
made with the results of the asymptotic theories for low R. A recent paper by 
Chester & Breach (1969) has shown that the method of matched asymptotic 
expansions gives the result 

12 
C, = ( 1  +&R + i&R2 [log &R + y + $log 2 - G] + +&,R310g + O(R3)}, 

(34) 

where y is Euler’s constant. The expansion is valid as R-t 0 and the terms up to 
and including the term in RZ log QR inside the braces were given by Proudman & 
Pearson (1957). Maxworthy (1965) has suggested that the expression 

12 C, w (l+&R-&R2+-ZLR3 1280 2 0 4 8 0  ) J  (35) 

given by Goldstein (1929) on the basis of Oseen theory is as good as any for 
calculating the drag for R < 0.9. The same conclusion cannot be drawn from the 
comparison of the present results with the theories given over the range R = 0.1 
to 1 in table 6 .  The present results are also illustrated for R < 1 in figure 1 (b) .  
They indicate that the expression of Chester & Breach (1969) gives a better 
approximation to the drag coefficient than any other asymptotic solution until 
about R = 0.6. The calculated values of CD lie between the curves of Proudman & 
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1.0 

i 

I - 0.1 
$ 
t3 

0.01 

0.001 r 1 I I I I 

0.01 0.1 I .o 10 100 
R 

R 

FIamE 1. (a) Comparison with theory and experiment, (DID,)- 1: (l), Proudman BC 
Pearson ; (2), Oseen; (3), Goldstein; (4), Pruppacher-Steinberger, Pruppacher, Beard- 
Pruppacher (experimental) ; I experimental scatter; 0, Maxworthy (experimental) ; 
0, Le Clair, Hamielec & Pruppacher ; A, Jenson ; x , Rimon & Cheng ; + , present results. 
( b )  Comparison with theory: 

D 3R 

D. 
(i) Oseen -- 1 =--; 

D 3R 9 
-- 1 = -+- R2 log gR; 
D, 16 160 

(ii) Proudman L% Pearson 

(iii) Chester & Breach 
D 3R 9R2 
D8 16 160 
-- 1 =-++[10g+R+y+$l0g2-+&+]; 

D 3R 9R2 2 7 ~ 3  
(iv) Chester & Breach -- 1 = - +- [log +R +r+Q log 2 -3s] + - log +R. 0, 16 160 640 
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Pearson (1957) and Chester & Breach (1969). As R increases they gradually 
coincide a t  R = 0-8 and 0.9 with the Proudman & Pearson (1957) expression. 
Thereafter ( R  > 1) all theories progressively overestimate the drag. This is in 
agreement with the conclusions of Le Clair et al. (1970) and Pruppacher et al. 
(1970)) that as the Reynolds number approaches zero, the drag approaches the 
Stokes drag in the above manner rather than via the Oseen drag as the experi- 
mental results of Maxworthy (1965) suggested, 

R 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Goldstein 

122.23 
62.22 
42.20 
32.19 
26.17 
22.16 
19.29 
17.13 
15.46 
14.11 

Proudman- 
Pearson 

122.05 
61.94 
41.87 
31.82 
25.78 
21.76 
18.90 
16.76 
15.10 
13.78 

Chester-Breach 

122.09 
62.01 
41.95 
31.91 
25.88 
21.88 
19.03 
16-91 
15.28 
14.00 

TABLE 6. Comparison of C, with theory for low R 

Present results 

122.10 
62.02 
42.02 
31.91 
25.85 
21.85 
18.96 
16.76 
15.10 
13.72 

Streamlines and equi-vorticity lines for the flow are shown over the range 
R = 1 to 40 in figures 2 and 3, respectively. The variation of the vorticity over the 
equator of the sphere is shown for the same range of R in figure 4. One of the 
main points of interest is to determine the Reynolds number at which a separated 
wake first appears behind the sphere and to examine the subsequent development 
of the wake with Reynolds number. Various authors, including Kawaguti (1950)) 
Lister (1953)) Dennis & Walker (1964) and Hamielec et al. (1967) have found that 
separation has not started to occur before R = 20. Jenson (1959) has estimated 
that separation starts at R = 17 and Rimon & Cheng (1969) obtained a separated 
flow for R as low as 10. The present solutions indicate that separation of the flow 
has not started at R = 20. Separation first starts when aLJa0 becomes zero a t  the 
point 6 = 0, 6 = 0. A linear interpolation between the values of all86 at this 
point for the cases R = 20 and R = 40 gives an estimate R = 20.5 for the onset of 
separation. This prediction is in excellent agreement with the results of Le Clair 
et al. (1970) and Pruppacher et al. (1970) who estimate separation starts at  R = 20. 

Separated flow past a sphere has been studied experimentally by Taneda 
(1956). He has found that separation starts somewhere between R = 22 and 
R = 25 and has estimated R = 24 as giving the start of separation, although the 
precise onset was difficult to observe. Taneda (1956) has also measured the 
growth of the length of the separated region behind the sphere as a function of 
Reynolds number. The present calculation at R = 40 gives the length of this 
region, measured along the axis 0 = 0 from the rearmost point of the sphere, as 
0.30 diameters. This value lies between the estimates of about 0-24 diameters of 
Jenson (1959) and 0.33 of Rimon & Cheng (1969), and appears to give a very close 
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FIGURE 2. For legend see facing page. 
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FIQURE 2 .  Streamlines for: (a) R = 1, ( b )  R = 10, (c) R = 20, (d )  R = 40 (enclosed 
streamlines, starting froin the centre, are $ = - 0.0003 and @ = - 0.0001). 
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(h)  

FIQURE 3. For legend see facing page. 
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(= - 0.25 

~ 

\- 

FIGIJRE 3. Equi-vorticity lines for: (a) R = 1, ( b )  R = 10, (c )  R = 20, (d )  R = 40. 

50 B L M  48 
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fit with the experimental result. This result also agrees well with the calculated 
eddy length of Le Clair et al. (1970) and Pruppacher et al. (1970) for R = 40. 

One further check of the present results with theory may be obtained by com- 
paring the tendency of the pressure coefficient k(n) at the front stagnation point 
as R increases with the result 

12 
1+R+0.643Rt' 

180" 150" 120" 90" 60" 30" 0" 

e 
FIGURE 4. Vorticity distribution over the surface of the sphere. 

obtained by Homann (1936) from boundary-layer theory. It is found that the 
calculated values in table 4 steadily approach the values given by (36) with 
increasing R. The discrepancy is less than 4 yo at R = 20 and less than 1 yo at 
R = 40. The present calculations of k(n)  are consistently lower than those of 
Jenson (1959) over the range R = 5 to 40, but there is reasonable agreement in the 
shape of the pressure distributions over the equator of the sphere. Pressure 
distributions over the equator of the sphere are given for the range R = 5 to 40 in 
figure 5 .  The precise details of k(0 )  can be calculated for the whole range of R 
from the results given in tables 2 and 3. 



Steady jlow pmt a sphere ad low and moderate Reynolds numbers 787 

180" 150" 120" 90" 60" 30" 0" 
e 

FIQURE 5. Pressure distribution over the surface of the sphere for R = 5,  10, 20, 40. 

5. Discussion 
The main advantages of the series truncation method arise from the fact that 

the problem is reduced to the solution of ordinary differential equations. First, 
the necessity of approximating derivatives in the 8 direction by finite differences 
is avoided. This is known to present difficulties in the far wake region behind the 
body. Secondly, it is possible to  use a small grid size h with a reasonably large field 
length 1 without encountering the practical difficulties imposed by computer core 
limitations when methods based on two-dimensional finite differences are used. 
The method does, however, introduce the problem of the maximum number of 
modes no which must be used to obtain an accurate approximation for a given 
Reynolds number. 

The number of modes required increases rapidly with R and the present cal- 
culations were terminated at R = 40 with no = 20. Although this range could be 

50-2 
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extended further, K would certainly have to be taken less than that value used 
for R = 40. Since K must not be taken too small relative to the exit tolerance E ,  

in order to maintain a realistic iterative scheme, it is felt that this method has 
been pursued to approximately its upper limit at R = 40. 

n0 Sl(0) 92(0) gd0) 94(0) C D  
10 2.7210 - 0.7231 0.0050 0.0008 2.246 
12 2.6879 -0.7136 0.0060 0*0010 2.222 
14 2.6791 - 0.7091 0.0056 0.0013 2.215 
16 2.6764 - 0.7075 0.0053 0.0014 2.212 

Estimates 2.6752 - 0.7066 0.0044 0.0014 2.210 

TABLE 7. Effect of truncation on the solution for R = 10 

The effect of variation of no on the solutions has been studied. For R < 1, 
taking n, greater than 6 produces no change in the solutions. For R > 1, some 
typical results are shown for the case R = 10 in table 7. Although it cannot be 
said that the results have completely converged when no = 16, it is unlikely that 
much further change will take place as 12, is increased. Underwood (1969) has 
suggested. that it  may be possible to estimate the effect of increasing the order of 
the truncation by applying the extension of Shanks (1955). If TnPl, Tn, T,,, are 
three successive approximations to a quantity, a revised estimate is given by 

This scheme has been applied to the results for n, = 12,14 and 16 in table 7 to 
give the estimates shown in the final row of the table. The physical properties 
derived from this estimated solution are all found to be considerably less than 
1 % different from those which have been derived from the solution for no = 16 
and which were given in the previous section. SimiIar remarks apply to the other 
Reynolds numbers for R > 1 and all the results given in the previous section are 
thought to be correct to within 1 yo. 

This work was supported by a grant from the National Research Council of 
Canada. 
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